Medie vs Mediană vs Mod
Media, mediana și modul sunt principalele măsuri ale tendinței centrale utilizate în statisticile descriptive. Ele sunt complet diferite unele de altele, iar cazurile în care sunt utilizate pentru a rezuma datele sunt, de asemenea, diferite.
Rău
Media aritmetică este suma valorilor datelor împărțite la numărul de valori ale datelor, adică
Dacă datele provin dintr-un spațiu eșantion, se numește medie eșantion (
), care este o statistică descriptivă a eșantionului. Deși este cea mai frecvent utilizată măsură descriptivă pentru un eșantion, nu este o statistică solidă. Este foarte sensibil la valorile aberante și la oscilații.
De exemplu, luați în considerare venitul mediu al cetățenilor unui anumit oraș. Deoarece toate valorile datelor sunt însumate și apoi împărțite, venitul unei persoane extrem de bogate afectează semnificativ media. Prin urmare, valorile medii nu sunt întotdeauna o bună reprezentare a datelor.
De asemenea, în cazul unui semnal alternativ, curentul care trece printr-un element variază periodic de la direcția pozitivă la direcția negativă și invers. Dacă luăm curentul mediu care trece prin element într-o singură perioadă, acesta va da un 0, ceea ce înseamnă că nu a trecut niciun curent prin element, ceea ce evident nu este adevărat. Prin urmare, și în acest caz, media aritmetică nu este o măsură bună.
Media aritmetică este un bun indicator atunci când datele sunt distribuite uniform. Pentru o distribuție normală, media este egală cu modul și mediana. De asemenea, are cele mai mici reziduuri atunci când se ia în considerare eroarea pătrată medie a rădăcinii; prin urmare, cea mai bună măsură descriptivă atunci când este necesar să se reprezinte un set de date cu un singur număr.
Median
Valorile punctului central de date după aranjarea tuturor valorilor datelor în ordine crescătoare este definită ca mediana setului de date. Mediana este a 2-a quartilă, a 5-a decilă și a 50-a percentilă.
• Dacă numărul de observații (puncte de date) este impar, atunci mediana este observația exact în mijlocul listei ordonate.
• Dacă numărul de observații (puncte de date) este par, atunci mediana este media celor două observații medii din lista ordonată.
Mediana împarte observația în două grupuri; adică un grup (50%) cu valori mai mari și un grup (50%) cu valori mai mici decât mediana. Medianele sunt utilizate în mod special în distribuții înclinate și reprezintă date destul de bune decât media aritmetică.
Mod
Modul este cel mai mare număr dintr-un set de observații. Modul unui set de date este calculat prin găsirea frecvenței fiecărui element din set.
• Dacă nu apare nicio valoare de mai multe ori, atunci setul de date nu are mod.
• În caz contrar, orice valoare care apare cu cea mai mare frecvență este un mod al setului de date.
Pot exista mai mult de 1 mod într-un set; prin urmare, modul nu este o statistică unică a unui set de date. Într-o distribuție uniformă, există un singur mod. Modul unei distribuții discrete de probabilitate este punctul în care funcția de masă a probabilității atinge punctul său cel mai înalt. Redând din interpretările de mai sus, putem spune că maximele globale sunt moduri.
Luați în considerare aplicarea tuturor celor trei măsuri la următorul set de date.
DATE: {1, 1, 2, 3, 5, 5, 5, 5, 6, 6, 8, 8, 9, 9, 9, 9, 9, 10, 10, 10, 14, 14, 15, 15, 15}
Media = (1+ 1+ 2+ 3+ 5+ 5+ 5+ 5+ 6+ 6+ 8+ 8+ 9+ 9+ 9+ 9+ 10+ 10+ 10+ 14+ 14+ 15+ 15+ 15) / 25 = 8,12
Mediană = 9 (al 13-lea element)
Mod = 9 (frecvența de 9 = 5)
Care este diferența dintre medie, medie și mod?
• Media aritmetică este suma valorilor (observațiilor) împărțită la numărul de observații. Nu este o statistică robustă și depinde în mare măsură de natura distribuției normale în cadrul distribuției luate în considerare. O singură valoare anterioară poate provoca o schimbare semnificativă a valorii medii, oferind valori relativ înșelătoare. Conceptul poate fi extins la media geometrică, media armonică, media ponderată și așa mai departe.
• Mediana este valorile medii ale setului de observații și este relativ mai puțin afectată de valori aberante. Poate oferi o estimare bună ca statistică sumară în cazurile foarte înclinate.
• Modul este cele mai comune valori de observare din setul de date. Dacă distribuția este pozitivă înclinată, modul este lăsat la mediană și, dacă este înclinat negativ, modul se află chiar la mediană.
• Dacă este înclinat pozitiv, media este corectă pentru mediană; dacă media înclinată negativ este în stânga medianei.
• În distribuția normală, toate cele trei, medie, mod și mediană sunt egale.